首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2456篇
  免费   348篇
  国内免费   66篇
电工技术   14篇
综合类   43篇
化学工业   92篇
金属工艺   784篇
机械仪表   40篇
建筑科学   5篇
矿业工程   42篇
能源动力   209篇
轻工业   4篇
石油天然气   4篇
武器工业   6篇
无线电   4篇
一般工业技术   202篇
冶金工业   1394篇
原子能技术   5篇
自动化技术   22篇
  2023年   80篇
  2022年   142篇
  2021年   172篇
  2020年   221篇
  2019年   177篇
  2018年   74篇
  2017年   124篇
  2016年   137篇
  2015年   125篇
  2014年   147篇
  2013年   166篇
  2012年   230篇
  2011年   195篇
  2010年   133篇
  2009年   161篇
  2008年   71篇
  2007年   161篇
  2006年   152篇
  2005年   46篇
  2004年   21篇
  2003年   19篇
  2002年   27篇
  2001年   24篇
  2000年   19篇
  1999年   13篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1982年   4篇
  1981年   2篇
  1978年   1篇
  1976年   1篇
  1966年   1篇
  1961年   4篇
  1959年   1篇
排序方式: 共有2870条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(9):12014-12027
The formed deposits wear out of refractory wall linings in the rotary kiln and may cause production disturbances. This study describes the chemical composition and mineralogical phase components at the deposit/refractory interface in the rotary kiln for fluxed iron ore pellets production. The main phases of refractory bricks are corundum and mullite, while the deposits mainly contain hematite and silicates. The main phases in the deposit/refractory brick contact zone are hematite, anorthite (CaAl2Si2O8), mullite, corundum, and silicates. Moreover, the hematite phases in the deposit/brick interface averagely contain 6.98 wt% Al and 1.38 wt% Ti. The silicates in the contact zone contain higher aluminium content and lower iron content than the silicates in the deposits. Finally, the thermodynamic analysis indicates that the main phases in the deposits can react with the refractory to form Al2Fe2O6, CaAl2Si2O8, feldspar, and liquid phases lead to the degradation of bricks in the kiln during the iron ore pellets production.  相似文献   
2.
通过显微组织观察与力学性能测试研究了氮含量(0.08%~0.22%,质量分数)对HPD-1双相不锈钢硬度、拉伸性能、低温冲击性能及疲劳性能的影响。结果表明,氮含量变化可显著影响试验钢γ/α相比例,当氮含量由0.08%升高到0.22%,γ相含量由38.1%提高至56.5%。α相的硬度由273 HV10提高到343 HV10,γ相的硬度由238 HV10提高到299 HV10,试验钢强度明显提升。氮元素对两相比例和奥氏体相韧性的双重影响导致试验钢低温冲击性能呈先上升后下降的趋势;更高的氮含量抑制疲劳裂纹萌生与拓展,是影响HPD-1双相不锈钢室温疲劳性能的主要因素。撕裂棱是疲劳断口的显著特征。  相似文献   
3.
The independent influence of microstructural features on fracture toughness of TC21 alloy with lamellar microstructure was investigated. Triple heat treatments were designed to obtain lamellar microstructures with different parameters, which were characterized by OM and SEM. The size and content of α plates were mainly determined by cooling rate from single β phase field and solution temperature in two-phase field; while the precipitation behavior of secondary α platelets was dominantly controlled by aging temperature in two-phase field. The content and thickness of α plates and the thickness of secondary α platelets were important microstructural features influencing the fracture toughness. Both increasing the content of α plates and thickening α plates (or secondary α platelets) could enhance the fracture toughness of TC21 alloy. Based on energy consumption by the plastic zone of crack tip in α plates, a toughening mechanism for titanium alloys was proposed.  相似文献   
4.
Herein, a new mechanism involving Lewis acid-oxygen vacancy interfacial synergistic catalysis for aniline N,N-diethylation with ethanol was proposed, and the SO42−/Ce0.84Zr0.16O2–WO3–ZrO2 catalyst (SCWZ) with both Lewis acid sites and oxygen vacancies was synthesized by the hydrothermal method, which shows better catalytic activity than the reported solid acidic catalysts. Besides, the SO42−/ZrO2 (SZ) and SO42−/WO3–ZrO2 (SWZ) catalysts were also prepared and compared with SCWZ to investigate the synergistic effect of each component. The SO42− and WO3 mainly generate Lewis acid by bonding with ZrO2, which is beneficial for the fracture of the N–H bond in aniline. The Ce0.84Zr0.16O2 solid solution mainly plays a vital role in generating the oxygen vacancies as the interface active species, which can participate in stripping –OH from ethanol, then the carbocation will also be released, which only needs 1.3805 kcal/mol energy, calculated by density functional theory (DFT), to be input. In comparison, the traditional reaction mechanism needs the Brønsted acidic sites to promote the protonation of ethanol, then dehydration and subsequent formation of carbocation followed, and 108.6846 kcal/mol energy needs to be input, which is far higher than that of the new mechanism. The apparent activation energy (Ea) over SCWZ was measured by experiment to be 34.09 kJ/mol, which is much lower than that of SWZ (47.10 kJ/mol) and SZ (54.37 kJ/mol), illustrating comparatively preferable kinetics for SCWZ than that of SWZ and SZ. Besides, the conversion of aniline and selectivity to N,N-diethylaniline over SCWZ reach almost 100% and 73%, respectively. The SCWZ can be renewed for 4 times without rapid deactivation, and the longevity of SCWZ is longer than that of SWZ and SZ, as the loaded SO42− and tetragonal ZrO2 are stabilized by Ce0.84Zr0.16O2 and WO3, respectively.  相似文献   
5.
Fe~(3+)and Zn~(2+)ions were doped into the lattice of CeO_2 via the hydrothermal method.The micro structure and spectra features were analyzed systemically.XRD results show that the solid solubility of Fe~(3+)and Zn~(2+)ions in Ce_(1-x)(Fe_(0.5)Zn_(0.5))_xO_2 can be identified as x=0.16.The cell volumes are decreased by increasing the doped content.The TEM graphs prove that the grain size of the sample is about 10 nm,and the EDS result indicates that the doped contents are in accordance with that of the theory concentrations.Meanwhile,the doping also causes the increasing concentrations of the defects and oxygen vacancies which are supported by the XPS,Raman,UV and PL characterizations.The samples exhibit better catalytic activities for improving the hydrogen storage properties and the electrochemical kinetics of the ball milled Mg_2Ni based composites.Further,the catalysis effects are improved by increasing the doped contents,which can be ascribed to the increasing contents of the oxygen vacancies,defects,the special electron transition states and the nature of the doped ions in CeO_2-based solid solutions.  相似文献   
6.
钢厂煤气脱硫工序排放的废脱硫剂是一种难以利用的有害固体废弃物,含一定量的铁及较高的钙和硫等元素。对废脱硫剂配入铁矿粉中进行了烧结杯的试验研究,结果表明,当废脱硫剂配比超过01%后,随着废脱硫剂配比的升高,烧结矿转鼓强度下降,利用系数下降,烧结烟气中SO2与NOx浓度增加,烧结矿的还原度有所下降,但烧结矿的低温还原粉化性能有所改善。烧结矿的矿相研究发现,废脱硫剂配比偏大时,磁铁矿体积分数增大,铁酸钙体积分数减少,并由针状结构向柱状、板状演变,烧结矿的气孔率上升。主要原因在于其粒度偏粗,含硫高,不利于成矿。当废脱硫剂粒度为-63mm及其配比控制在01%时,烧结矿的产量和质量有所改善,烟气中SO2、NOx较基准试验变化不大。工业试验表明,在烧结混匀矿中配入废脱硫剂配比小于012%时,烧结矿产量和质量没有明显变化,烧结烟气脱硫脱硝效果也没有受到影响。废脱硫剂掺入铁矿中进行烧结是一种资源化利用的有效方法,不仅解决了有害固体废弃物对环境的影响,而且使二次资源得到综合利用。  相似文献   
7.
在进行能量色散X射线荧光光谱(EDXRF)解谱时,如果给定样品的元素构成,采用纯元素谱图剥离的方式会更加合理,但由于每个元素的谱线都不止一条,如果仅仅针对主线对齐做剥离,会导致结果的严重失真,同时剥离次序对解谱结果有较大影响。介绍了一种最优化算法与纯元素谱剥离相结合的EDXRF解谱方法,该方法以多个纯元素谱的强度大小和峰位漂移道数作为变量构建残差方程,并用最优化计算的方法去调整,直至残差达到极小。实验采用强度顺序剥离、能量顺序剥离和最优化算法拟合3种方法分别对谱线重叠较为严重的La-Ce-Pr-Nd混合液样品的L系谱线进行了解析,结果表明最优化计算方法拟合的谱图与原始谱的残差 (1415.0)比另两种方法(166094.0和3192.7)大幅度缩小,拟合谱与原始谱更为吻合,并且方法在实现时对初值不敏感,解谱精度也不依赖于剥离次序。  相似文献   
8.
The research of hydrogen fuel internal combustion engine (HICE) had great significance facing the challenges of energy and environmental problems. Based on the detailed hydrogen-air reaction mechanism, the pre-mix model of CHEMKIN-Pro software was selected to simplify the detailed mechanism GRI-3.0. The most important elements and reactions was chose to construct framework mechanism firstly based on the sensitivity coefficient for H2O and NO formation, and additional elements and reactions were added to framework mechanism for complementing the oxidation path of N2 and H2. A simplified mechanism including 24-step elementary reaction was obtained and the laminar burning velocity calculated by this simplified mechanism matches well with the detailed mechanism in a wide range. This simplified mechanism was also applied in a CFD model which predicted the cylinder instantaneous pressure and NOx emission accurately within a large range of fuel air equivalent ratio. Showing that this mechanism has good applicability.  相似文献   
9.
Independent hydrogen production from petrochemical wastewater containing mono-ethylene glycol (MEG) via anaerobic sequencing batch reactor (ASBR) was extensively assessed under psychrophilic conditions (15–25 °C). A lab-scale ASBR was operated at pH of 5.50, and different organic loading rates (OLR) of 1.00, 1.67, 2.67, and 4.00 gCOD/L/d. The hydrogen yield (HY) progressed from 134.32 ± 10.79 to 189.09 ± 22.35 mL/gMEGinitial at increasing OLR from 1.00 to 4.00 gCOD/L/d. The maximum hydrogen content of 47.44 ± 3.60% was achieved at OLR of 4.0 gCOD/L/d, while methane content remained low (17.76 ± 1.27% at OLR of 1.0 gCOD/L/d). Kinetic studies using four different mathematical models were conducted to describe the ASBR performance. Furthermore, two batch-mode experiments were performed to optimize the nitrogen supplementation as a nutrient (C/N ratio), and assess the impact of salinity (as gNaCl/L) on hydrogen production. HY substantially dropped from 62.77 ± 4.09 to 6.02 ± 0.39 mL/gMEGinitial when C/N ratio was increased from 28.5 to 114.0. Besides, the results revealed that salinity up to 10.0 gNaCl/L has a relatively low inhibitory impact on hydrogen production. Eventually, the cost/benefit analysis showed that environmental and energy recovery revenues from ASBR were optimized at OLR of 4.0 gCOD/L/d (payback period of 7.13 yrs).  相似文献   
10.
In this work, we investigate the influence mechanism of hydrogen partial pressure on fracture toughness and fatigue life of a high strength pipeline steel. Both fracture toughness test and fatigue life test are carried out under different hydrogen partial pressure. The experimental results show that with the increasing of hydrogen partial pressure, fracture toughness and fatigue life decrease and the decrease trends gradually flatten out. Hydrogen has a larger effect on fatigue life than fracture toughness. Only 3% hydrogen gas can cause a 67.7% decrease of fatigue life. The in-situ hydrogen permeation test is performed respectively in 2 MPa, 5 MPa and 8 MPa hydrogen partial pressure. With the increasing of hydrogen partial pressure, the increase trend of hydrogen permeation current gradually tends to be gentle, which indicates that the hydrogen atoms entering into the material gradually become saturated. This result can be used to clarify the influence mechanism of hydrogen partial pressure on fracture toughness and fatigue life.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号